Emotions are biological states associated with the nervous system, especially the brain brought on by neurophysiological changes. They variously cognate with thoughts, feelings, behavioural responses, and a degree of pleasure or displeasure and it exists everywhere in daily life. It is a significant research topic in the development of artificial intelligence to evaluate human behaviour that are primarily based on emotions. In this paper, Deep Learning Classifiers will be applied to SJTU Emotion EEG Dataset (SEED) to classify human emotions from EEG using Python. Then the accuracy of respective classifiers that is, the performance of emotion classification using Convolutional Neural Network (CNN) and Recurrent Neural Networks are compared. The experimental results show that RNN is better than CNN in solving sequence prediction problems.
Emotion classification, SEED, EEG, CNN, RNN, Confusion matrix
International Journal of Trend in Scientific Research and Development - IJTSRD having
online ISSN 2456-6470. IJTSRD is a leading Open Access, Peer-Reviewed International
Journal which provides rapid publication of your research articles and aims to promote
the theory and practice along with knowledge sharing between researchers, developers,
engineers, students, and practitioners working in and around the world in many areas
like Sciences, Technology, Innovation, Engineering, Agriculture, Management and
many more and it is recommended by all Universities, review articles and short communications
in all subjects. IJTSRD running an International Journal who are proving quality
publication of peer reviewed and refereed international journals from diverse fields
that emphasizes new research, development and their applications. IJTSRD provides
an online access to exchange your research work, technical notes & surveying results
among professionals throughout the world in e-journals. IJTSRD is a fastest growing
and dynamic professional organization. The aim of this organization is to provide
access not only to world class research resources, but through its professionals
aim to bring in a significant transformation in the real of open access journals
and online publishing.